
Elmo: Source-Routed Multicast for Public Clouds
Muhammad Shahbaz, Lalith Suresh, Jen Rexford, Nick Feamster, Ori Rottenstreich, and Mukesh Hira

3. Evaluation

2. Approach: Encode Multicast Trees Inside Packets using Prog. Switches

1. Motivation

Design decisions for encoding multicast trees:
1. Encoding switch ports in a bitmap
2. Encoding on the logical topology
3. Sharing bitmap across switches (e.g., R > 0)
4. Limiting header size using default packet (p-) rules
5. Reducing traffic overhead using switch (or s-) rules

Feature IP Multicast Li et al. Rule aggr. App. Layer BIER SGM Elmo

#Groups 5K 150K 500K 1M+ 1M+ 1M+ 1M+
Group-table usage high high mod none low none low
Flow-table usage none mod high none none none none
Group-size limits none none none none 2.6K <100 none

Network-size limits:
#hosts none none none none 2.6K none none

Unorthodox switch
capabilities no no no no yes yes no

Line-rate processing yes yes yes no yes no yes
Address-space isolation no no no yes yes yes yes
Multipath forwarding no lim lim yes yes yes yes
Control overhead high low mod none low low low
Tra�c overhead none none low high low none low

End-host replication no no no yes no no no

Comparison between Elmo and related multicast approaches for public clouds

output ports. However, all these approaches require unortho-
dox processing at switches (e.g., loops, multiple lookups on
a single table, and more) and are infeasible to implement
and process multicast tra�c at line rate. BIER, for example,
requires �ow tables to return all entries (wildcard) match-
ing the bit strings—a prohibitively expensive data structure
compared to traditional TCAM-based match-action tables
in emerging programmable data planes. SGM, on the other
hand, looks up all the IP addresses in the routing table to �nd
their respective next hops, requiring an arbitrary number of
routing table lookups, thus, breaking the line-rate invariant.
Contrary to these approaches, Elmo is designed to operate
at line rate using modern programmable data planes (like
Barefoot To�no [28] and Cavium XPliant [35]).

7 Conclusion
In this paper, we presented Elmo, a solution to scale multicast
to millions of groups per data center. Elmo encodes multi-
cast forwarding rules inside packets themselves, reducing the
need to install corresponding group-table entries in network
switches. Elmo takes advantage of emerging programmable
switches and unique characteristics of data-center topolo-
gies to identify compact encodings of multicast forwarding
rules inside packets. Our simulations show that a 325-byte
header su�ced to support a million multicast groups in a
three-tier data center with 27,000 hosts, while using mini-
mal group-table entries in network switches. Furthermore,
Elmo is inexpensive to implement in programmable switches
today and supports applications that use multicast without
modi�cation.

A Strawman: p-rule lookups using
match-action stages is expensive

Lookups in network switches are typically done using match-
action tables, after the parser. We could do the same for p-
rules, but using match-action tables to lookup p-rules would

result in ine�cient use of switch resources. Unlike s-rules,
p-rules are headers. Hence, to match on p-rules, we need a
table that matches on all p-rule headers. In each �ow rule,
we only match the switch identi�er with one p-rule, while
wildcarding the rest. This is a constraint of match-action
tables in switches that we cannot avoid. To match N p-rules,
we need same number of �ow-table entries.

The fundamental problem here is that instead of increasing
the depth, p-rules increase the width of a table. Modern pro-
grammable switches can store millions of �ow-table entries
(depth). However, they are severely limited by the number of
headers they can match on in a stage (width). For example,
in case of RMT [32], a match-action stage consists of 106
1,000 x 112b SRAM blocks and 16 2,000 x 40b TCAM blocks.
These blocks can combine together to build wider or deeper
SRAMs and TCAMs to make larger tables. For example, to
implement a table that matches on ten p-rules, each 11-bit
wide, we need three TCAM blocks (as we need wildcards)
to cover 110b for the match. This results in a table of 2,000
entries x 120b wide. And out of these 2,000 entries, we only
use ten entries to match the respective p-rules. Thus, we
end up using three TCAMs for ten p-rules while consuming
only 0.5% of entries in the table, wasting 99.5% of the entries
(which cannot be used by any other stage).

An alternative to using TCAMs for p-rule lookups is to
eschewwildcard lookups and use SRAMblocks. In this case, a
switch needs N stages to lookup N p-rules in a packet, where
each stage only has a single rule. This too is prohibitively
expensive. First, the number of stages in a switch is limited
(RMT has 16 stages for the ingress pipeline). Second, as with
TCAMs, 99.9% of the SRAM entries go to waste, as each
SRAM block is now used only for a single p-rule each (out
of 1,000 available entries per block).

12

Scalability: Elmo scales to millions of
multicast groups with minimal group-table
usage and control-plane update overhead
on network switches (§5.1) Shahbaz:
mention both data- and control-plane
scalability here.

In a multi-rooted Clos topology having 27,000 hosts and one million multicast groups, with
group sizes based on a production trace:
(i) 95-99% of groups can be encoded using a 325-byte p-rule header without using a default
p-rule (Figure and, left).
(ii) Spine and leaf switches use only a mean (max) of 3,800 (11,000) and 1,100 (2,900) s-rules
(Figure and, center).
(iii) Tra�c overhead is kept within 34% and 5% of the ideal for 64-byte and 1,500-byte
packets, respectively (Figure and, right).
(iv) The average (max) update load on hypervisor, leaf, and spine switches is 21 (46), 5 (13),
and 4 (7), respectively. Core switches don’t require any updates.

Applications run unmodi�ed, and
bene�t from reduced CPU and bandwidth
utilization for multicast workloads (§5.2)

We run ZeroMQ (a publish-subscribe system) and sFlow (a monitoring application) on top
of Elmo. Elmo enables these systems to scale to hundreds of receivers while maintaining
constant CPU and bandwidth overhead at the transmitting VM (Figure).

End-host resource requirements: Elmo
adds negligible overheads to hypervisor
switches (§5.3)

A PISCES-based hypervisor switch encapsulates p-rules and forwards packets at line rate
on a 20 Gbps link (Figure).

Table 1. Summary of results.

0

250K

500K

750K

1M

0 6 12
Redundancy limit (R)

G
ro

up
s

co
ve

re
d

 w
ith

 p
−r

ul
es

Li et al.

0.0

2.5K

5.0K

7.5K

10.0K

0 6 12
Redundancy limit (R)

s−
ru

le
s

in
st

al
le

d
pe

r s
wi

tc
h Unicast

Overlay

0

1

2

3

4

0 6 12
Redundancy limit (R)

Tr
af

fic
 O

ve
rh

ea
d

(ra
tio

 w
ith

 id
ea

l m
ul

tic
as

t)

Figure 1. Placement strategy with no more than 12 VMs of
a tenant per rack (i.e., colocated VMs).

0

250K

500K

750K

1M

0 6 12
Redundancy limit (R)

G
ro

up
s

co
ve

re
d

 w
ith

 p
−r

ul
es Li et al.

0

10K

20K

30K

0 6 12
Redundancy limit (R)

s−
ru

le
s

in
st

al
le

d
pe

r s
wi

tc
h Unicast

Overlay

0

1

2

3

4

0 6 12
Redundancy limit (R)

Tr
af

fic
 O

ve
rh

ea
d

(ra
tio

 w
ith

 id
ea

l m
ul

tic
as

t)

Figure 1. Placement strategy with no more than one VM
of a tenant per rack. (Left) Number of groups covered using
non-default p-rules. (Center) s-rules usage across switches
(the horizontal dashed line show rule usage for Li’s et al.
SDN-based multicast scheme [77] with no more than one
VM of a tenant per rack). (Right) Tra�c overhead relative to
ideal (horizontal dashed lines show unicast (top) and overlay
multicast (bottom)).

and (iii) the total tra�c overhead incurred by introducing
redundancy via p-rule sharing and default p-rules.

Figure shows groups covered with non-default p-rules,
s-rules installed per switch, and tra�c overhead for a place-
ment strategy that packs up to 12 VMs of a tenant per rack
(P = 12). p-rules su�ce to cover a high fraction of groups;
89% of groups are covered evenwhen usingR = 0, and 99.78%
with R = 12. With VMs packed closer together, the allocated
p-rule header sizes su�ce to encode most multicast trees
in the system. Figure (left) also shows how increasing the
permitted number of extra transmissions with p-rule sharing
allows more groups to be represented using only p-rules.
Figure (center) shows the trade-o� between p-rule and

s-rule usage. With R = 0, p-rule sharing tolerates no redun-
dant tra�c. In this case, p-rules comprise only of switches
having precisely same bitmaps; as a result, the controller
must allocate more s-rules, with 95% of leaf switches having
fewer than 4,059 rules (mean 1,059). Still, these are on aver-
age 9.44 (max 2.46) times fewer rules when compared to the
Li’s et al. SDN-based multicast scheme [77] with no limit on
the VMs of a tenant packed per rack (P = All). (Aside from
these many group-table entries, Li’s et al. scheme [77] also re-
quiresO(#Groups) �ow-table entries for group aggregation.)
Increasing R to 6 and 12 drastically decreases s-rule usage as
more groups are handled using only p-rules. With R = 12,
switches have on average 2.74 rules, with a maximum of 107.

Figure (right) shows the resulting tra�c overhead assum-
ing 1,500-byte packets. With R = 0 and su�cient s-rule
capacity, the resulting tra�c overhead is identical to ideal
multicast. Increasing R increases the overall tra�c overhead
to 5% of the ideal. Overhead is modest because even though
a data packet may have as much as 325 bytes of p-rules at
the source, p-rules are removed from the header with every
hop (§3.1), reducing the total tra�c overhead. For 64-byte
packets, the tra�c overhead for WVE increases only to 29%

8

a. Data Plane Scalability

Scalability: Elmo scales to millions of
multicast groups with minimal group-table
usage and control-plane update overhead
on network switches (§5.1) Shahbaz:
mention both data- and control-plane
scalability here.

In a multi-rooted Clos topology having 27,000 hosts and one million multicast groups, with
group sizes based on a production trace:
(i) 95-99% of groups can be encoded using a 325-byte p-rule header without using a default
p-rule (Figure 4 and, left).
(ii) Spine and leaf switches use only a mean (max) of 3,800 (11,000) and 1,100 (2,900) s-rules
(Figure 4 and, center).
(iii) Tra�c overhead is kept within 34% and 5% of the ideal for 64-byte and 1,500-byte
packets, respectively (Figure 4 and, right).
(iv) The average (max) update load on hypervisor, leaf, and spine switches is 21 (46), 5 (13),
and 4 (7), respectively. Core switches don’t require any updates.

Applications run unmodi�ed, and
bene�t from reduced CPU and bandwidth
utilization for multicast workloads (§5.2)

We run ZeroMQ (a publish-subscribe system) and sFlow (a monitoring application) on top
of Elmo. Elmo enables these systems to scale to hundreds of receivers while maintaining
constant CPU and bandwidth overhead at the transmitting VM (Figure).

End-host resource requirements: Elmo
adds negligible overheads to hypervisor
switches (§5.3)

A PISCES-based hypervisor switch encapsulates p-rules and forwards packets at line rate
on a 20 Gbps link (Figure).

Table 1. Summary of results.

0

250K

500K

750K

1M

0 6 12
Redundancy limit (R)

G
ro

up
s

co
ve

re
d

 w
ith

 p
−r

ul
es

Li et al.

0.0

2.5K

5.0K

7.5K

10.0K

0 6 12
Redundancy limit (R)

s−
ru

le
s

in
st

al
le

d
pe

r s
wi

tc
h Unicast

Overlay

0

1

2

3

4

0 6 12
Redundancy limit (R)

Tr
af

fic
 O

ve
rh

ea
d

(ra
tio

 w
ith

 id
ea

l m
ul

tic
as

t)

Figure 4. Placement strategy with no more than 12 VMs of
a tenant per rack (i.e., colocated VMs).

0

250K

500K

750K

1M

0 6 12
Redundancy limit (R)

G
ro

up
s

co
ve

re
d

 w
ith

 p
−r

ul
es Li et al.

0

10K

20K

30K

0 6 12
Redundancy limit (R)

s−
ru

le
s

in
st

al
le

d
pe

r s
wi

tc
h Unicast

Overlay

0

1

2

3

4

0 6 12
Redundancy limit (R)

Tr
af

fic
 O

ve
rh

ea
d

(ra
tio

 w
ith

 id
ea

l m
ul

tic
as

t)

Figure 2. Placement strategy with no more than one VM of
a tenant per rack (i.e., dispersed VMs).

and (iii) the total tra�c overhead incurred by introducing
redundancy via p-rule sharing and default p-rules.
Figure 4 shows groups covered with non-default p-rules,

s-rules installed per switch, and tra�c overhead for a place-
ment strategy that packs up to 12 VMs of a tenant per rack
(P = 12). p-rules su�ce to cover a high fraction of groups;
89% of groups are covered evenwhen usingR = 0, and 99.78%
with R = 12. With VMs packed closer together, the allocated

p-rule header sizes su�ce to encode most multicast trees
in the system. Figure 4 (left) also shows how increasing the
permitted number of extra transmissions with p-rule sharing
allows more groups to be represented using only p-rules.
Figure 4 (center) shows the trade-o� between p-rule and

s-rule usage. With R = 0, p-rule sharing tolerates no redun-
dant tra�c. In this case, p-rules comprise only of switches
having precisely same bitmaps; as a result, the controller
must allocate more s-rules, with 95% of leaf switches having
fewer than 4,059 rules (mean 1,059). Still, these are on aver-
age 9.44 (max 2.46) times fewer rules when compared to the
Li’s et al. SDN-based multicast scheme [77] with no limit on
the VMs of a tenant packed per rack (P = All). (Aside from
these many group-table entries, Li’s et al. scheme [77] also re-
quiresO(#Groups) �ow-table entries for group aggregation.)
Increasing R to 6 and 12 drastically decreases s-rule usage as
more groups are handled using only p-rules. With R = 12,
switches have on average 2.74 rules, with a maximum of 107.
Figure 4 (right) shows the resulting tra�c overhead as-

suming 1,500-byte packets. With R = 0 and su�cient s-rule
capacity, the resulting tra�c overhead is identical to ideal
multicast. Increasing R increases the overall tra�c overhead
to 5% of the ideal. Overhead is modest because even though
a data packet may have as much as 325 bytes of p-rules at
the source, p-rules are removed from the header with every
hop (§3.1), reducing the total tra�c overhead. For 64-byte
packets, the tra�c overhead for WVE increases only to 29%
and 34% of the ideal when R = 0 and R = 12, still signi�cantly
improving over overlay multicast5 (92%) and unicast (406%).

p-rule sharing is e�ective evenwhen groups are dispersed
across leaves. Thus far, we discussed results for when up to
5In overlay multicast, the source host’s hypervisor switch replicates packets
to one host under each participating leaf switch, which then replicates
packets to other hosts under that leaf switch.

8

b. Control Plane Scalability

d. End-to-End Application Results e. Hypervisor Switch Overhead

c. Hardware Resource Usage

what header to push on the packet. The header consists of
a list of rules (packet rules, or p-rules for short)—each con-
taining a set of output ports along with zero or more switch
identi�ers—that intermediate network switches use to for-
ward the packet. These p-rules encode the multicast tree of a
given group inside the packet, obviating the need for network
switches to store a large number of multicast forwarding
rules or update these rules when the tree changes. Hypervi-
sor switches run as software at the edge of the network, they
do not have the hard constraints on �ow-table sizes and rule
update frequency that network switches have [49, 71, 88, 89].
Each hypervisor switch only maintains �ow rules for mul-
ticast groups that have member VMs running on the same
host, discarding packets belonging to other groups.

Network switch. Upon receiving a multicast data packet,
a physical switch (or network switch) running inside the
network simply parses the header to look for a matching
p-rule (i.e., a p-rule containing the switch’s own identi�er)
and forwards the packet to the associated output ports, as
well as popping p-rules when they are no longer needed to
save bandwidth. When a multicast tree is too large to encode
entirely in the packet header, a network switch may have
its own group-table rule (called a switch rule, or s-rule for
short). As such, if a packet header contains no matching
p-rule, the network switch checks for an s-rule matching the
destination IP address (multicast group) and forwards the
packet accordingly. If no matching s-rule exists, the network
switch forwards the packet based on a default p-rule—the last
p-rule in the packet header. Elmo installs only a small number
of s-rules on network switches, consistent with the small
group tables available in high-speed hardware switches [36,
67, 83]. The network switches in data centers form a tiered
topology (e.g., Clos) with leaf and spine switches grouped
into pods, and core switches. Together they enable Elmo to
encode multicast trees e�ciently.

3 Encoding Multicast Trees
Upon receiving a multicast data packet, a switch must iden-
tify what set of output ports (if any) to forward the packet
while ensuring it is sent on every output port in the tree
and as few extra ports as possible. In this section, we �rst
describe how to represent multicast trees e�ciently, by capi-
talizing on the structure of data centers (topology and short
paths) and capabilities of programmable switches (�exible
parsing and forwarding).

3.1 Packet Header Design
Elmo encodes a multicast forwarding policy e�ciently in a
packet header as a list of p-rules (Figurea). We introduce �ve
key design decisions (D1-5) that make our p-rule encoding
both compact and simple for switches to process.

Throughout this section, we use a three-tier multi-rooted
Clos topology (Figure) with a multicast group stretching

p-rule:	bitmap
p-rule:	bitmap
p-rule:	bitmap

p-rule(s) default	rule

p-rule(s) default	rule

(optional)

u-leaf
u-spine
core

d-spine

d-leaf

type (1	bit)

bitmap id0 id1 idN

(optional)

(b)	p-rule	format

type

1

(a)	header	format

0

next	id
next	p-rule

d-ports u-ports flag	(1	bit)
d-ports

Elmo’s header and p-rule format. (u: upstream, d: down-
stream.)

across three pods (marked in orange) as a running example.
The topology consists of four core switches and pods, and
two spine and leaf switches per pod. Each leaf switch further
connects to eight hosts.

D1: Encoding switch output ports in a bitmap. Each p-
rule uses a simple bitmap to represent the set of switch output
ports (typically, 48 ports) that should forward the packet
(Figureb). Using a bitmap is desirable because it is the internal
data structure that network switches use to direct a packet to
multiple output ports [32]. Alternative encoding strategies
use destination group members, encoded as bit strings [103];
bloom �lters, representing link memberships [65, 91]; or
simply a lists of IP addresses [30] to identify the set of output
ports. However, these representations cannot be e�ciently
processed by network switches without violating line-rate
guarantees (discussed in detail in §6).
Having a separate p-rule—with a bitmap and an identi-

�er for each switch—for the multicast group in our exam-
ple three-tier Clos topology (Figure) needs a header size of
161 bits. For identi�ers, we use two bits to identify the four
core switches and three bits for spine and leaf switches, each.

With bitmap encoding, the p-rule for switch L0 (in Figure)
may look like 00010111-00:L0. Each bit corresponds to an
output port on the given switch, indicating the downstream
and upstream ports participating in the multicast tree.

D2: Encoding on the logical topology. Instead of having
separate p-rules for each switch in the multicast tree, Elmo
exploits the tiered architecture and short path lengths2 in
today’s data-center topologies to reduce the number of re-
quired p-rules. In multi-rooted Clos topologies, such as our
example topology (Figure), leaf-to-spine and spine-to-core
links use multipathing. All spine switches in the same pod
behave as one giant logical switch (forwarding packets to
the same destination leaf switches), and all core switches
together behave as one logical core switch (forwarding pack-
ets to the same pods). We refer to the logical topology as one
where there is a single logical spine switch per pod, and a
single logical core switch connected to pods.
2e.g., a maximum of �ve hops in the Facebook Fabric topology [21]

3

L5L1 L4 L7L6

S7S6S5S4

C3C2C1C0

S1S0

L0 L2 L3

S2 S3
P1P0 P3P2

logical
core

logical	spine:	P0,	P1,	P2,	and	P3

upstream	p-rules

multicast
tree

sender receiver
- ports	are	numbered	counter	clockwise,	starting	at	the	first	downstream	port.

00010111-00-1

00-00-1

10010111 10111011 10011101 10111110

10 01 11

1011

downstream	p-rules

1011

(p)	10:[P0]
(p)	01:[P2]
(d)	11:[P3]

(p)	10010111:[L0]
(p)	10111011:[L5]
(d)	10111111:[L6,L7]

#p-rules =	2	(and	two	switches	per	p-rule)

#s-rules	=	0

(p)	10:[P0]
(p)	01:[P2]
(s)	11:[P3]

(p)	10010111:[L0]
(p)	10111011:[L5]
(s)	10011101:[L6]
(s)	10111110:[L7]

redundancy:	 R	=	0
#s-rules	=	1

R	=	2
#s-rules	=	0,	1

(p)	10:[P0]
(p)	11:[P2,P3]

(p)	10011111:
[L0,L6]

(p)	10111111:
[L5,L7]

legends: p-rule	 (p),	s-rule	(s),	and	default	p-rule	(d)

core
spine

leaf

Encodingmulticast tree.An examplemulticast tree on a three-tiermulti-rooted Clos topologywith upstream and downstream
p-rules (i.e., rules encoded inside a packet) and s-rules (i.e., rules installed in a switch) assignment for a group. A packet
originating from the sender is forwarded up to the logical core using the upstream p-rules, and down to the receivers using the
downstream p-rules (and s-rules). For example, when R = 0 and #s-rules = 1, a packet arriving at P2 (S4 or S5) from the core is
forwarded using the p-rule 01, whereas at P3, it is forwarded using the s-rule 11.

We order p-rules inside a packet by layers according to
the following topological ordering: upstream leaf, upstream
spine, core, downstream spine, and downstream leaf (Figure 2a).
Doing so also accounts for varying switch port densities
per layer. Organizing p-rules by layers together with other
characteristics of the logical topology allow us to further
reduce header size and tra�c overhead of a multicast group
in four key ways:

a. We only require one p-rule per logical switch, with all
switches belonging to the same logical group using not only
the same bitmap to send packets to output ports, but also
requiring only one logical switch identi�er in the p-rule.

b. A multicast packet visits a layer only once, both in its
upstream and downstream path. Grouping p-rules by layer,
therefore, allows switches to pop all headers of that layer
when forwarding a packet from one layer to another. This is
because p-rules from any given layer are irrelevant to subse-
quent layers in the path. This also exploits the capability of
programmable switches to decapsulate headers at line rate,
discussed in §4. Doing so further reduces tra�c overhead.

c. For switches in the upstream path, p-rules contain only the
bitmap—including the downstream and upstream ports, and
a �ag bit (Figure 2b: t�pe = 0)—without a switch identi�er
list. These switches simply read the �rst upstream p-rule in
the packet header (Figure 2a), popping it before forwarding
to the next switch in the upstream path. The �ag bit indi-
cates whether a switch should use the con�gured underlying
multipath scheme (e.g., ECMP, CONGA [18], or HULA [69])
or not. Otherwise, the upstream ports are used for forward-
ing packets upward to multiple switches in cases where no
single spine or core has connectivity to all members of a
multicast group (e.g., due to network failures, §3.3).

d. Again, because a multicast packet visits a layer only once,
the only switches that require upstream ports represented
in their bitmaps are the leaf and spine switches in the up-
stream path (Figure 2b: t�pe = 0). The bitmaps of all other
switches only require their downstream ports represented
using bitmaps (Figure 2b: t�pe = 1). The shorter bitmaps for
these switches, therefore, reduce space usage even further.
Note, upstream ports di�er based on the source, whereas,
downstream ports remain identical within the same multi-
cast group.

In our example (Figure), encoding on the logical topology
drops the header size to 83 bits (a reduction of 48.44% from
D1).

D3: Sharing a bitmap across switches. Even with a logi-
cal topology, having a separate p-rule for each switch in the
downstream path could lead to very large packet headers,
imposing bandwidth overhead on the network. In addition,
network switches have restrictions on the packet header
sizes they can parse (e.g., 512 bytes [32]), limiting the number
of p-rules we can encode in each packet. To further reduce
header sizes, Elmo assigns multiple switches within each
layer (enabled by D2) to the same p-rule, if the switches have
the same—or similar—bitmaps. Mapping multiple switches
to a single bitmap, as a bitwise OR of their individual bitmap,
reduces header sizes because the output bitmap of a rule
requires more bits to represent than switch identi�ers; for
example, a datacenter with 27,000 hosts has approximately
1,000 switches (needing 10 bits to represent switch identi-
�ers), whereas switch port densities range from 48 to 576
(requiring that many bits) [18]. The algorithm to identify
sets of switches with similar bitmaps is described in §3.2.
We encode the set of switches as a simple list of switch

identi�ers, as shown in Figure 2b. Alternate encodings, such
4

Switch Elmo Li et al. [77]

hypervisor 21 (46) NE (NE)
leaf 5 (13) 42 (42)
spine 4 (7) 78 (81)
core 0 (0) 133 (203)

Table 2. The average (max) number of hypervisor, leaf, spine,
and core switch updates per second when no more than one
VM of a tenant is placed per rack. Results are shown for
WVE distribution. (NE: not evaluated by Li et al. [77])

switches, today, can support up to 40,000 and 1,000 updates
per second [71, 88] implying that Elmo leaves enough spare
control-tra�c capacity for other protocols in data centers to
function.

b. Network failures. Elmo gracefully handles spine and
core switch failures,6 forwarding multicast packets via alter-
nate paths using upstream ports represented in the groups’
p-rule bitmap (§3.3). During this period, some groups might
experience transient loss while the network is recon�gur-
ing [84]. In our simulations, up to 12.25% of groups are im-
pacted when a single spine switch fails and up to 25.81%
when a core switch fails. Hypervisor switches incur average
(max) updates of 176.86 (1712) and 674.89 (1852), respectively.
We measure that today’s hypervisor switches are capable of
handling batched updates of 80,000 requests per second (on
a modest server) and, hence, can recon�gure within 25 ms
of these failures.

Elmo’s controller computes p- and s-rules for a group
within amillisecond. Our controller consistently executes
Algorithm 1 for computing p- and s-rules in less than a mil-
lisecond. Across our simulations, our Python implementa-
tion computes the required rules for each group in 0.20 ms ±
0.45 ms (SD), on average, for all group sizes with a header size
limit of 325 bytes. Existing studies report that it takes up to
100 ms for a controller to learn an event, issue updates to the
network, and for the network state to converge [84]. Elmo’s
control logic, therefore, contributes little to the overall con-
vergence time for updates and is fast enough to support
the needs of large data centers today, even before extensive
optimization.

5.2 Evaluating End-to-end Applications
We ran two popular data-center applications on top of Elmo:
ZeroMQ [61] and sFlow [87]. We found that these applica-
tions ran unmodi�ed on top of Elmo and bene�ted from
reduced CPU and bandwidth utilization for multicast work-
loads.

6When a leaf switch fails, all hosts connected to it lose connectivity to the
network, and must wait for the switch to get back online.

● ●
● ● ● ● ● ● ●●

●

●

● ● ● ● ● ●0K
50K

100K
150K
200K

1 2 4 8 16 32 6412
8
25

6

Number of subscribers

Th
ro

ug
hp

ut
 (r

ps
)

● ●Elmo Unicast

0
25
50
75

100

1 2 4 8 16 32 6412
8
25

6

Number of subscribers

C
PU

 U
til

iz
at

io
n

(%
) Elmo Unicast

Figure 5. Comparison of a pub-sub application using Ze-
roMQ (over UDP) with a message size of 100 bytes.

Testbed setup. The topology for this experiment comprises
nine PowerEdge R620 servers having two eight cores In-
tel(R) Xeon(R) CPUs running at 2.00 GHz and with 32 GB of
memory, and three dual-port Intel 82599ES 10 Gigabit Ether-
net NICs. Three of these machines emulate a spine and two
leaf switches; these machines run an extended version of the
PISCES [93] switchwith support for the bitmap_port_select
primitive for routing tra�c between interfaces. The remain-
ing machines act as hosts, with three hosts per leaf switch.

5.2.1 Publish-subscribe using ZeroMQ
We implement a publish-subscribe (pub-sub) system using
ZeroMQ (over UDP). ZeroMQ enables tenants to build pub-
sub systems on top of a cloud environment (like AWS [2],
GCP [7], or Azure [10]), by establishing unicast connections
between publishers and subscribers.7

Throughput (rps). Figure (left) shows the throughput com-
parison in requests per second. With unicast, the throughput
at subscribers decreases with an increasing number of sub-
scribers because the publisher becomes the bottleneck; the
publisher services a single subscriber at 185K rps on average
and drops to about 0.25K rps for 256 subscribers. With Elmo,
the throughput remains the same regardless of the number
of subscribers and averages 185K rps throughout.

CPU utilization. The CPU usage of the publisher VM (and
the underlying host) also increases with increasing number
of subscribers, Figure (right). The publisher VM consumes
32% of the VM’s CPU with 64 subscribers and saturates the
CPU with 256 subscribers onwards. With Elmo, the CPU us-
age remains constant regardless of the number of subscribers
(i.e., 4.97%).

5.2.2 Host telemetry using sFlow
As our second application, we compare the performance
of host telemetry using sFlow with both unicast and Elmo.
sFlow exports physical and virtual server performance met-
rics from sFlow agents to collector nodes (e.g., CPU, memory,
7A drawback of native multicast is that we cannot use TCP. However,
protocols (like PGM [95] and SRM [50]) can support applications that require
reliable delivery using native multicast.

10

0

5

10

15

0 5 10 15 20 25 30
No. of p−rules

Th
ro

ug
hp

ut
 (M

pp
s)

0

5

10

15

20

0 5 10 15 20 25 30
No. of p−rules

Th
ro

ug
hp

ut
 (G

bp
s)

Figure 6. Hypervisor switch (i.e., PISCES) throughput when
adding di�erent number of p-rules.

sFlow exports physical and virtual server performance met-
rics from sFlow agents to collector nodes (e.g., CPU, memory,
and network stats for docker, KVMs, and hosts) set up by dif-
ferent tenants (and teams) to collect metrics for their needs.
We compare the egress bandwidth utilization at the host of
the sFlow agent with increasing number of collectors, using
both unicast and Elmo. The bandwidth utilization increases
linearly with unicast, with the addition of each new collec-
tor. With 64 collectors, the egress bandwidth utilization at
the agent’s host is 370.35 Kbps. With Elmo, the utilization
remains constant at about 5.8 Kbps (equal to the bandwidth
requirements for a single collector).

5.3 End-host Microbenchmarks
We conduct microbenchmarks to measure the incurred over-
heads on the hypervisor switches when encapsulating p-
rule headers onto packets (decapsulation at every layer is
performed by network switches). We found Elmo imposes
negligible overheads at hypervisor switches.

Setup. Our testbed has a host H1 directly connected to two
hosts H2 and H3. H1 has 20 Gbps connectivity with both H2
and H3, via two 10 Gbps interfaces per host. H2 is a tra�c
source and H3 is a tra�c sink; H1 is running PISCES with
the extensions for Elmo to perform necessary forwarding.
H2 and H3 use MoonGen [48] for generating and receiving
tra�c, respectively.

Results. Figure shows throughput at a hypervisor switch
when encapsulating di�erent number of p-rule headers, in
both packets per second (pps) and Gigabits per second (Gbps).
Increasing the number of p-rules reduces the pps rate, as the
packet size increases, while the throughput in bps remains
unchanged. The throughput matches the capacity of the
links at 20 Gbps, demonstrating that Elmo imposes negligible
overhead on hypervisor switches.

6 Related Work
In this section, we compare Elmo with related multicast
approaches. Table 3 highlights various areas where these
existing approaches lack, compared to Elmo, in the context
of today’s cloud environments.

Feature

Sc
he

m
e

IP
M
ul
ti
ca
st

Li
et

al
.[
77

]

R
ul
e
ag

gr
.[
77

]

A
pp

.L
ay

er

B
IE
R
[1
03

]

SG
M

[3
0]

El
m
o

#Groups 5K 150K 500K 1M+ 1M+ 1M+ 1M+
Group-table

usage high high mod none low none low

Flow-table
usage⇤ none mod high none none none none

Group-size
limits none none none none 2.6K <100 none

Network-
size limits:
#hosts

none none none none 2.6K none none

Unorthodox
switch

capabilities
no no no no yes yes no

Line-rate
processing yes yes yes no yes no yes

Address-
space

isolation
no no no yes yes yes yes

Multipath
forwarding no lim lim yes yes yes yes

Control
overhead high low mod none low low low

Tra�c
overhead none none low high low none low

End-host
replication no no no yes no no no

Table 3. Comparison between Elmo and related multicast
approaches. All approaches are evaluated against a group-
table size of 5,000 and a packet-header size of 300 bytes. (⇤use
of unicast �ow-table entries for multicast.)

Wide-area multicast. Multicast has been studied in detail
in the context of wide-area networks [26, 40, 41, 46, 92],
where the lack of applications and architectural complexities
led to limited adoption [47]. Furthermore, the decentralized
protocols, such as IGMP and PIM, faced several control-plane
challenges with regards to stability in the face of member-
ship churn [47]. Over the years, much work has gone into
IP multicast to address issues related to scalability [37, 65],
reliability [24, 25, 50, 74], security [66], and congestion con-
trol [60, 102]. Elmo, however, is designed for data centers
which di�er in signi�cant ways from the wide-area context.

Data-center multicast. With SDN-based data centers, a
single administrative domain has control over the entire
topology and is no longer required to run the decentralized
protocols like IGMP and PIM. However, SDN-based multicast
is still bottlenecked by limited switch group-table capaci-
ties [36, 67, 83]. Approaches to scaling multicast groups in
this context have tried using rule aggregation to share multi-
cast entries in switches with multiple groups [42, 63, 77, 78].

11

4.1.2 Matching p-rules using parser
Instead of using a match-action table to lookup p-rules, the
switch can scan the packet as it arrives at the parser. The
parser linearly traverses the packet header and stores the
bits in a header vector based on the con�gured parse graph.
Parsers in programmable data planes provide support for
setting metadata at each stage of the parse graph. Hence,
enabling basic match-and-set lookups inside the parsers.
Elmo exploits this property, augmenting the parser to

check at each stage—when parsing p-rules—to see if the ID
of the given p-rule matches the switch ID. If it does, the
parser stores the p-rule’s bitmap in a metadata �eld and
skips parsing remaining p-rules and jumps directly to the
next header (if any). The parser parses the list of p-rules until
it reaches a rule with “next” �ag set to 0 (Figure 2: p-rule
format), or the default p-rule.
By matching p-rules inside the parser, we no longer re-

quire a match-action stage to search p-rules at each switch,
thus, making switch’s memory resources available for other
use, including s-rules. However, the size of a header vector
(i.e., the maximum header size a parser can parse) in pro-
grammable chips is also �xed. For RMT the size is 512 bytes.
We show in Section 5.2, how Elmo’s encoding scheme eas-
ily �ts enough p-rules within 325 bytes while supporting
millions of groups.

4.1.3 Forwarding based on p- and s-rules
After parsing the packet, the parser forwards metadata to
the ingress pipeline, which includes a bitmap, a matched
�ag (indicating the presence of a valid bitmap), and a default
bitmap. The ingress pipeline implements the control �ow
to check for the following cases: If the matched �ag is set,
write the bitmap metadata to the queue manager [?], us-
ing a bitmap_port_select primitive (§5.1.2). Else, lookup
the group table using the destination IP address for an s-
rule. If there is a match, write the s-rule’s group identi�er
to the queue manager, which then converts it to a bitmap.
Otherwise, use the bitmap from the default p-rule.
The queue manager generates the desired copies of the

packet and forwards them to the egress pipeline [?]. At the
egress pipeline, we execute the following post-processing
checks. For leaf switches, if a packet is going out towards
the host, the egress pipeline invalidates all p-rules indicating
the de-parser to remove these rules from the packet before
forwarding it to the hosts. This o�oads the burden at the
receiving hypervisor switches, saving unnecessary cycles
spent to decapsulate p-rules. Otherwise, the egress pipeline
invalidates all p-rules up to the p-rules(s) of the next-hop
switch before forwarding the packet.

4.2 Realizing on Hypervisor Switches
In hardware switches, representing each p-rule as a separate
header is required to match p-rules in the parsing stage.

Header size limit for RMT (512B)

0

200

400

600

0 5 10 15 20 25 30
No. of p−rules

H
ea

de
r s

ize
 (b

yt
es

)

Figure 4. Header usage with varying number of p-rules.

However, using the same approach for the hypervisor switch
(like PISCES [?]) reduces throughput because each header
copy triggers a separate DMA write call. Instead, to operate
at line rate, we treat all p-rules as one header and encode
it using a single write call (§5.4). Not doing so, decreases
throughput linearly with increasing number of p-rules to
pack.

5 Evaluation
In this section, we evaluate the scalability and resource re-
quirements of Elmo. Table 1 summarizes our results.

5.1 Hardware Resource Requirements
We study the hardware resource requirements of switching
ASICs to process p-rules. We found Elmo inexpensive to
implement in modern switching ASICs.

5.1.1 Header usage with varying number of p-rules
Figure shows percentage header usage—for a chip that can
parse a 512-byte packet header e.g., RMT [?]—as we increase
the number of p-rules. Each p-rule consists of four bytes
for switch IDs and a 48-bit bitmap. With 30 p-rules, we are
still well within the range, consuming only 63.5% of header
space for p-rules with 190 bytes for other protocols; in enter-
prises [?] and data centers [?] that take about 90 bytes [?].
We evaluated these results using the open-source compiler
for P4’s behavioral model (i.e., bmv1 [?]). Also, a parser
parsing 30 headers (i.e., p-rules in our case) consumes about
45% of its TCAM resources [?].

5.1.2 Enabling bitmap-based output port selection
Network switches already use an output port bit vector, in-
ternally, for replicating packets [?]. However, it’s not yet ex-
posed as a metadata �eld that the parser can set. We add sup-
port for specifying this bit vector using a new primitive ac-
tion in P4 [?].We call this new primitive bitmap_port_select.
It takes a bitmap of size n as input and sets the output port
bit vector �eld that a queue manager uses to generate copies
of a packet, routed to each egress port. The function is exe-
cuted by a match-action stage in the ingress pipeline before
forwarding the packet to the queue manager. We evaluate
the output port selection primitive using Synopsys 28/32 nm

7

Modern cloud workloads (e.g., publish-subscribe, analytics, telemetry,
replication, messaging, finance, and more) frequently exhibit
• one-to-many, multicast communication patterns
• and require sub-millisecond latencies and high throughput

Yet, none of the cloud providers today (e.g., Azure, GCP,) support
native multicast
• because of the inherent data- and control-plane scalability limitations of

current approaches, see →

We believe Elmo, a source-routed multicast can address these limitations as
• emerging programmable data planes and unique characteristics of data

center topologies lead to efficient implementations of source-routed multicast
• and alleviates both the pressure on switching hardware resources and

control-plane overheads during churn

to 5% of the ideal. Overhead is modest because even though
a data packet may have as much as 325 bytes of p-rules at
the source, p-rules are removed from the header with every
hop (§3.1), reducing the total tra�c overhead. For 64-byte
packets, the tra�c overhead for WVE increases only to 29%
and 34% of the ideal when R = 0 and R = 12, still signi�cantly
improving over overlay multicast5 (92%) and unicast (406%).

p-rule sharing is e�ective evenwhen groups are dispersed
across leaves. Thus far, we discussed results for when up to
12 VMs of the same tenant were placed in the same rack. To
understand how our results vary for di�erent VM placement
strategies, we explore an extreme case where the placement
strategy spreads VMs across leaves, placing no more than a
single VM of a tenant per rack. Figure 5 (left) shows this ef-
fect. Dispersing groups across leaves requires larger headers
to encode the whole multicast tree using only p-rules. Even
in this case, p-rules with R = 0 can handle as many as 750K
groups, since 77.8% of groups have less than 36 switches, and
there are 30 p-rules for the leaf layer—just enough header
capacity to be covered only with p-rules. The average (max)
s-rule usage is still 3.33 (1.71) times less than Li’s et al. SDN-
based multicast approach [77] under this placement strategy.
Increasing R to 12 ensures that 95.9% of groups are covered
using p-rules. We see the expected drop in s-rule usage as
well, in Figure 5 (center), with 95% of switches having fewer
than 2,435 s-rules. The tra�c overhead increases to within
25% of the ideal when R = 12, in Figure 5 (right), but still
improving signi�cantly over overlay multicast (92%) and
unicast (406%).

p-rule sharing is robust to di�erent group size distribu-
tions. We also study how the results are a�ected by di�erent
distributions of group sizes, using the Uniform group size
distribution. We expect that larger group sizes will be more
di�cult to encode using only p-rules. We found that with the
P = 12 placement strategy, the total number of groups cov-
ered using only p-rules drops to 814K at R = 0 and to 922K
at R = 12. When spreading VMs across racks with P = 1,
only 250K groups are covered by p-rules using R = 0, and
750K when R = 12. The total tra�c overhead for 1,500-byte
packets in that scenario increases to 11%.

Reducing s-rule capacity increases default p-rule usage
if p-rule sizes are insu�cient. Limiting the s-rule capacity
of switches allows us to study the e�ects of limited switch
memory on the e�ciency of the encoding scheme. Doing
so increases the number of switches that are mapped to the
default p-rule. When limiting the s-rules per switch to 10,000
rules, and using the extreme P = 1 placement strategy, the
uniform group size distribution experiences higher tra�c
overheads, approaching that of overlay multicast at R = 0

5In overlay multicast, the source host’s hypervisor switch replicates packets
to one host under each participating leaf switch, which then replicates
packets to other hosts under that leaf switch.

Switch Elmo Li et al.

hypervisor 21 (46) NE (NE)
leaf 5 (13) 42 (42)
spine 4 (7) 78 (81)
core 0 (0) 133 (203)

Figure 3. The average (max) number of switch updates per
second when no more than one VM of a tenant is placed per
rack. (NE: not evaluated by Li et al.)

(87% vs 92%), but still being only 40% over ideal multicast
at R = 12. Using the WVE distribution, however, brings
down tra�c overhead to 19% and 25% for R = 6 and R = 12,
respectively. With the tighter placement of P = 12, however,
we found the tra�c overhead to consistently stay under 5%
regardless of the group-size distribution.

Reduced p-rule header sizes and s-rule capacities in-
flate tra�c overheads. Finally, to study the e�ects of the
size of the p-rule header, we reduced the size so that the
header could support at most 10 p-rules for the leaf layer (i.e.,
125 bytes per header). In conjunction, we also reduced the
s-rule capacity of each switch to 10,000 and used the P = 1
placement strategy to test a scenario with maximum dis-
persement of VMs. This challenging scenario even brought
the tra�c overhead to exceed that of overlay multicast at
R = 12 (123%). However, in contrast to overlay multicast,
Elmo still forwards packets at line rate without any overhead
on the end-host CPU utilization.

5.1.3 Control-Plane Scalability
Elmo is robust to membership churn and network fail-
ures. We use the same Facebook Fabric setup to evaluate
the e�ects of group membership churn and network failures
on the control-plane update overhead on switches.

a. Group membership dynamics. In Elmo, we distinguish
between three types of members: senders, receivers, or both.
For this evaluation, we randomly assign one of these three
types to each member. All VMs of a tenant who are not a
member of a group have equal probability to join; similarly,
all existing members of the group have an equal probability
of leaving. Join and leave events are generated randomly,
and the number of events per group is proportional to the
group size, which follows the WVE distribution.
If a member is a sender, the controller only updates the

source hypervisor switch. By design, Elmo only uses s-rules
if the p-rule header capacity is insu�cient to encode the
entire multicast tree of a group. Membership changes trigger
updates to sender and receiver hypervisor switches of the
group depending on whether upstream or downstream p-
rules need to be updated. When a change a�ects s-rules, it
triggers updates to the leaf and spine switches.

9

